All Issue

2023 Vol.3, Issue 2 Preview Page
31 December 2023. pp. 91-102
Abstract
References
1
Archibald PA. 1972. The genus Nautococcus Korschikov (Chlorophyceae, Chlorococcales). Phycologia 11(1), 207-212. 10.2216/i0031-8884-11-2-207.1
2
Battah M, El-Ayoty Y, El-Fatah Abomohra A, El-Ghany SA and Esmael A. 2013. Optimization of growth and lipid production of the chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Applied Sciences Journal 28(11), 1536-1543. https://doi.org/10.5829/idosi.wasj.2013.28.11.1918.
3
Barkia I, Saari N and Manning SR. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs 17(5), 304. MDPI AG. https://doi.org/10.3390/md17050304. 10.3390/md1705030431137657PMC6562505
4
Choi YY, Patel AK, Hong ME, Chang WS and Sim SJ. 2019. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports 7, 100270. https://doi.org/10.1016/j.biteb.2019.100270. 10.1016/j.biteb.2019.100270
5
Demirbas A, and Fatih Demirbas M. 2011. Importance of algae oil as a source of biodiesel. Energy Conversion and Management 52(1), 163-170. https://doi.org/10.1016/j.enconman.2010.06.055. 10.1016/j.enconman.2010.06.055
6
Given PH, Marzec A, Barton WA, Lynch LJ and Gerstein BC. 1986. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate. Fuel 65(2), 155-163. https://doi.org/10.1016/0016-2361(86)90001-3. 10.1016/0016-2361(86)90001-3
7
Goh BHH, Ong HC, Cheah MY, Chen WH, Yu KL and Mahlia TMI. 2019. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renewable and Sustainable Energy Reviews 107, 59-74. https://doi.org/10.1016/j.rser.2019.02.012. 10.1016/j.rser.2019.02.012
8
Gómez PI, Mayorga J, Flaig D, Castro-Varela P, Jaupi A, Ulloa PA, Soto-Bartierra J, Henríquez V and Rojas V. 2023. Looking beyond Arthrospira: Comparison of antioxidant and anti-inflammatory properties of ten cyanobacteria strains. Algal Research 74, 103182. https://doi.org/10.1016/j.algal.2023.103182. 10.1016/j.algal.2023.103182
9
Gravalos I, Xyradakis P, Kateris D, Gialamas T, Bartzialis D and Giannoulis K. 2016. An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Natural Resources 07(1), 57-68. https://doi.org/10.4236/nr.2016.71006. 10.4236/nr.2016.71006
10
Ji X, Cheng J, Gong D, Zhao X, Qi Y, Su Y and Ma W. 2018. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga‑Scenedesmus obliquus XJ002. Science of the Total Environment 633, 593-599. https://doi.org/10.1016/j.scitotenv.2018.03.240. 10.1016/j.scitotenv.2018.03.24029587228
11
Jóvér J, Antal K, Zsembeli J, Blaskó L and Tamás J. 2018. Assessment of gross calorific value of crop and bio-energy residues. Research in Agricultural Engineering 64(3), 121-127. https://doi.org/10.17221/13/2017-RAE. 10.17221/13/2017-RAE
12
Khan S, Das P, Abdul Quadir M, Thaher MI, Mahata C, Sayadi S and Al-Jabri H. 2023a. Microalgal feedstock for biofuel production: recent advances, challenges, and future perspective. Fermentation 9(3), 281. https://doi.org/10.3390/fermentation9030281. 10.3390/fermentation9030281
13
Leong WH, Lim JW, Lam MK, Lam SM, Sin JC and Samson A. 2021. Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously. Journal of Hazardous Materials 409, 124455. https://doi.org/10.1016/j.jhazmat.2020.124455. 10.1016/j.jhazmat.2020.12445533168319
14
Lin W, Zhang Z, Chen Y, Zhang Q, Ke M, Lu T and Qian H. 2023. The mechanism of different cyanobacterial responses to glyphosate. Journal of Environmental Sciences (China) 125, 258-265. https://doi.org/10.1016/j.jes.2021.11.039. 10.1016/j.jes.2021.11.03936375911
15
Martinka J, Rantuch P and Wachter I. 2019. Impact of water content on energy potential and combustion characteristics of methanol and ethanol fuels. Energies 12(18), 3491. https://doi.org/10.3390/en12183491. 10.3390/en12183491
16
Mehariya S, Goswami RK, Karthikeysan OP and Verma P. 2021. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553. 10.1016/j.chemosphere.2021.13055333940454
17
Nielsen SS. 2010. Phenol-sulfuric acid method for total carbohydrates. In: Food Analysis Laboratory Manual. Food Science Texts Series. Nielsen SS, ed. Springer, Boston, MA, 47-53. https://doi.org/10.1007/978-1-4419-1463-7_6. 10.1007/978-1-4419-1463-7_6
18
Priyadharsini P, Nirmala N, Dawn SS, Baskaran A, SundarRajan P, Gopinath KP and Arun J. 2022. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. Algal Research 66, 102810. https://doi.org/10.1016/j.algal.2022.102810. 10.1016/j.algal.2022.102810
19
Tabakaev R, Shanenkov I, Kazakov A and Zavorin A. 2017. Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis 124, 94-102. https://doi.org/10.1016/j.jaap.2017.02.016. 10.1016/j.jaap.2017.02.016
20
Ummalyma SB, Sirohi R, Udayan A, Yadav P, Raj A, Sim SJ and Pandey A. 2023. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Phytochemistry Reviews 22(4), 969-991. https://doi.org/10.1007/s11101-022-09814-3. 10.1007/s11101-022-09814-335431709PMC9006494
21
Vieira HH, Bagatini IL, Guinart CM and Vieira AAH. 2016. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31(2), 155-165. https://doi.org/10.4490/algae.2016.31.4.14. 10.4490/algae.2016.31.4.14
22
Vieira KR, Pinheiro PN and Zepka LQ. 2020. Volatile organic compounds from microalgae. In: Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds. Academic Press Inc., 659-686. https://doi.org/10.1016/B978-0-12-818536-0.00024-5. 10.1016/B978-0-12-818536-0.00024-531902114
23
Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2. 10.1016/S0176-1617(11)81192-2
24
White TJ, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: PCR Protocols (Issue 1). Academic Press, Inc. https://doi.org/10.1016/b978-0-12-372180-8.50042-1. 10.1016/B978-0-12-372180-8.50042-11696192
Information
  • Publisher :The Korean Society of Phycology
  • Publisher(Ko) :한국조류학회
  • Journal Title :Aquatic Nature
  • Journal Title(Ko) :수생생물
  • Volume : 3
  • No :2
  • Pages :91-102
  • Received Date : 2023-11-19
  • Revised Date : 2023-12-12
  • Accepted Date : 2023-12-12