All Issue

2023 Vol.3, Issue 2 Preview Page
31 December 2023. pp. 77-89
Abstract
References
1
Ahmad A, Banat F, Alsafar H and Hasan SW. 2022. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Science of the Total Environment 806, 150585. https://doi.org/10.1016/j.scitotenv.2021.150585. 10.1016/j.scitotenv.2021.15058534597562
2
Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, Abu Amr SS and Nassani DE. 2022. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy. Journal of Environmental Management 324(September), 116415. https://doi.org/10.1016/j.jenvman.2022.116415. 10.1016/j.jenvman.2022.11641536206653
3
Boukid F, Comaposada J, Ribas-Agustí A and Castellari M. 2021. Development of high-protein vegetable creams by using single-cell ingredients from some microalgae species. Foods 10(11), 2550. https://doi.org/10.3390/foods10112550. 10.3390/foods1011255034828831PMC8621224
4
Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH and Lamers PP. 2013. Analysis of fatty acid content and composition in microalgae. Journal of Visualized Experiments : JoVE 80. https://doi.org/10.3791/50628. 10.3791/5062824121679PMC3938209
5
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM and Torzillo G. 2023. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochemical and Photobiological Sciences 22, 1733-1789. https://doi.org/10.1007/s43630-023-00407-3. 10.1007/s43630-023-00407-337036620
6
Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001. 10.1016/j.biotechadv.2007.02.00117350212
7
Das P, Aziz SS and Obbard JP. 2011. Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy 36(9), 2524-2528. https://doi.org/10.1016/j.renene.2011.02.002. 10.1016/j.renene.2011.02.002
8
Given PH, Marzec A, Barton WA, Lynch LJ and Gerstein BC. 1986. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate. Fuel 65(2), 155-163. https://doi.org/10.1016/0016-2361(86)90001-3. 10.1016/0016-2361(86)90001-3
9
Gopinath A, Puhan S and Nagarajan G. 2009. Relating the cetane number of biodiesel fuels to their fatty acid composition: A critical study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223(4), 565-683. https:// doi.org/10.1243/09544070JAUTO950. 10.1243/09544070JAUTO950
10
Gravalos I, Xyradakis P, Kateris D, Gialamas T, Bartzialis D and Giannoulis K. 2016. An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Natural Resources 7(1), 57-68. https://doi.org/10.4236/nr.2016.71006. 10.4236/nr.2016.71006
11
International Energy Agency. 2022a. Global Energy and Climate Model Documentation, IEA Report, 1-129.
12
International Energy Agency. 2022b. Renewables 2022. IEA report, 1-159.
13
Islam MA, Ayoko GA, Brown R, Stuart D and Heimann K. 2013. Influence of fatty acid structure on fuel properties of algae derived biodiesel. Procedia Engineering 56, 591-596. https://doi.org/10.1016/j.proeng.2013.03.164. 10.1016/j.proeng.2013.03.164
14
Jóvér J, Antal K, Zsembeli J, Blaskó L and Tamás J. 2018. Assessment of gross calorific value of crop and bio-energy residues. Research in Agricultural Engineering 64(3), 121-127. https://doi.org/10.17221/13/2017-RAE. 10.17221/13/2017-RAE
15
Juneja A, Ceballos RM and Murthy GS. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 6(9), 4607-4638. MDPI AG. https://doi.org/10.3390/en6094607. 10.3390/en6094607
16
Knothe G. 2011. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chemistry 13(11), 3048-3065. https://doi.org/10.1039/c0gc00946f. 10.1039/c0gc00946f
17
Krisnangkura K. 1986. A simple method for estimation of cetane index of vegetable oil methyl esters. Journal of American Oil Chemists' Society 63(4), 552-553. 10.1007/BF02645752
18
Maltsev Y, Krivova Z, Maltseva S, Maltseva K, Gorshkova E and Kulikovskiy M. 2021. Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Scientific Reports 11(1), 19818. https://doi.org/10.1038/s41598-021-99376-9. 10.1038/s41598-021-99376-934615938PMC8494790
19
Mariotti F, Tomé D, Mirand P. 2008. Converting nitrogen into protein-Beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition 48, 177-184. 10.1080/1040839070127974918274971
20
Mata TM, Martins AA and Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020. 10.1016/j.rser.2009.07.020
21
Minyuk GS, Chelebieva ES, Chubchikova IN, Dantsyuk NV, Drobetskaya IV, Sakhon EG, Chivkunova OB, Chekanov KA, Lobakova ES, Sidorov RA and Solovchenko AE. 2016. pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism. Russian Journal of Plant Physiology 63(4), 566-574. https://doi.org/10.1134/S1021443716040105. 10.1134/S1021443716040105
22
Nielsen SS. 2010. Phenol-sulfuric acid method for total carbohydrates. In: Food Analysis Laboratory Manual. Food Science Texts Series. Nielsen SS, ed. Springer, Boston MA. pp. 47-53. https://doi.org/10.1007/978-1-4419-1463-7_6. 10.1007/978-1-4419-1463-7_6
23
Park JY, Kim DK, Lee JP, Park SC, Kim YJ and Lee JS. 2008. Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology 99(5), 1196-1203. https://doi.org/10.1016/j.biortech.2007.02.017. 10.1016/j.biortech.2007.02.01717416517
24
Ramírez-Verduzco LF, Rodríguez-Rodríguez JE and Jaramillo-Jacob ADR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1), 102-111. https://doi.org/10.1016/j.fuel.2011.06.070. 10.1016/j.fuel.2011.06.070
25
Saito M, Watanabe H, Sasaki M, Ookubo M, Yarita T, Shiraiwa M and Asayama M. 2023. Coproduction of lipids and carotenoids by the novel green alga Coelastrella sp. depending on cultivation conditions. Biotechnology Reports 37, e00769. https://doi.org/10.1016/j.btre.2022.e00769. 10.1016/j.btre.2022.e0076936660172PMC9843265
26
Saluja RK, Kumar V and Sham R. 2016. Stability of biodiesel - A review. Renewable and Sustainable Energy Reviews 62, 866-881. https://doi.org/10.1016/j.rser.2016.05.001. 10.1016/j.rser.2016.05.001
27
Singh SP and Singh P. 2014. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50, 431-444. https://doi.org/10.1016/j.rser.2015.05.024. 10.1016/j.rser.2015.05.024
28
Toshkova-Yotova T, Georgieva A, Iliev I, Alexandrov S, Ivanova A, Pilarski P and Toshkova R. 2022. Antitumor and antimicrobial activity of fatty acids from green microalga Coelastrella sp. BGV. South African Journal of Botany 151, 394-402. https://doi.org/10.1016/j.sajb.2022.04.003. 10.1016/j.sajb.2022.04.003
29
Vieira HH, Bagatini IL, Guinart CM and Vieira AAH. 2016. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31(2), 155-165. https://doi.org/10.4490/algae.2016.31.4.14. 10.4490/algae.2016.31.4.14
30
Wang Q, Song H, Liu X, Liu B, Hu Z and Liu G. 2019. Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. Journal of Phycology 55(6), 1290-1305. https://doi.org/10.1111/jpy.12915. 10.1111/jpy.1291531411734
31
Wang Y, Tibbetts SM and McGinn PJ. 2021. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 10(12), 3002. https://doi.org/10.3390/foods10123002. 10.3390/foods1012300234945551PMC8700990
32
Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2. 10.1016/S0176-1617(11)81192-2
33
White TJ, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: PCR Protocols (Issue 1). Academic Press, Inc. https://doi.org/10.1016/b978-0-12-372180-8.50042-1. 10.1016/B978-0-12-372180-8.50042-11696192
34
Williams PJLB and Laurens LML. 2010. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy and Environmental Science 3(5), 554-590. https://doi.org/10.1039/b924978h. 10.1039/b924978h
35
Xue Z, Wan F, Yu W, Liu J, Zhang Z and Kou X. 2018. Edible oil production from microalgae: A review. European Journal of Lipid Science and Technology 120(6), 1-11. https://doi.org/10.1002/ejlt.201700428. 10.1002/ejlt.201700428
36
Yoo C, Choi GG, Kim SC and Oh HM. 2013. Ettlia sp. YC001 showing high growth rate and lipid content under high CO2. Bioresource Technology 127, 482-488. https://doi.org/10.1016/j.biortech.2012.09.046. 10.1016/j.biortech.2012.09.04623147124
37
Yoo C, La HJ, Kim SC and Oh HM. 2015. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnol. Bioeng 112, 288-296. https://doi.org/10.1002/bit.25362. 10.1002/bit.2536225182602
Information
  • Publisher :The Korean Society of Phycology
  • Publisher(Ko) :한국조류학회
  • Journal Title :Aquatic Nature
  • Journal Title(Ko) :수생생물
  • Volume : 3
  • No :2
  • Pages :77-89
  • Received Date : 2023-11-10
  • Revised Date : 2023-12-05
  • Accepted Date : 2023-12-06