Original Articles
Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D'Ottavio M and Tredici MR. 2014. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol. Bioeng. 111, 956-964. https://doi.org/10.1002/bit.25014.
10.1002/bit.2501423904253Baidya A, Akter T, Islam MR, Shah AA, Hossain MA, Salam MA and Paul SI. 2021. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon 7(12). https://doi.org/10.1016/j.heliyon.2021.e08525.
10.1016/j.heliyon.2021.e0852534934841PMC8660997Bentahar S, Abada R and Nadia PY. 2023. Biotechnology: Definitions, types and main applications. YMER 22, 563-575. https://doi.org/10.36987/jes.v10i2.4717.
10.36987/jes.v10i2.4717Carvalho AP, Silva SO, Baptista JM and Malcata FX. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89, 1275-1288. https://doi.org/10.1007/s00253-010-3047-8.
10.1007/s00253-010-3047-821181149Che CA, Kim SH, Hong HJ, Kityo MK, Sunwoo IY, Jeong GT and Kim SK. 2019. Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. Bioresource Technology 285, 121323. https://doi.org/10.1016/j.biortech.2019.121323.
10.1016/j.biortech.2019.12132330981013Chen HB, Wu JY, Wang CF, Fu CC, Shieh CJ, Chen CI, Chih YW and Liu YC. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal 53(1), 52-56. https://doi.org/10.1016/j.bej.2010.09.004.
10.1016/j.bej.2010.09.004Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, Saputra IK, Samuel PD, Arif MZ and HARIATI A. 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Biodiversitas: Journal of Biological Diversity 22(12). https://doi.org/10.13057/biodiv/d221215.
10.13057/biodiv/d221215Ferreira VS and Sant'Anna C. 2016. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology 33(1), 20. https://doi.org/10.1007/s11274-016-2181-6.
10.1007/s11274-016-2181-627909993Fu W, Guðmundsso O, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson BØ and Brynjólfsson S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97, 2395-2403. https://doi.org/10.1007/s00253-012-4502-5.
10.1007/s00253-012-4502-523095941PMC3586100García-López DA, Olguín EJ, González-Portela RE, Sánchez-Galván G, De Philippis R, Lovitt RW and Saldívar RP. 2020. A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. Bioresource Technology 298, 122548. https://doi.org/10.1016/j.biortech.2019.122548.
10.1016/j.biortech.2019.12254831837580George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T and Mishra S. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-A potential strain for bio-fuel production. Bioresource Technology 171, 367-374. https://doi.org/10.1016/j.biortech.2014.08.086.
10.1016/j.biortech.2014.08.08625218209Han JS, Li Pj, Choi T and Oh SJ. 2023. Effects of the spectral quality and intensity of light-emitting diodes on growth and biochemical composition of Chlorella vulgaris. Korean J. Fish. Aquat. Sci. 56(6), 878-888. https://doi.org/10.5657/KFAS.2023.0878.
Han KH and Oh SJ. 2018. Effects of various intensities and wavelengths of light emitting diodes (LEDs) on the growth of the prasinophytes Tetraselmis suecica and T. tetrathele. The Korean Society of Fisheries and Aquatic Science 51, 64-71. https://doi.org/10.5657/KFAS.2018.0064.
Jung JH, Sirisuk P, Ra CH, Kim JM, Jeong GT and Kim SK. 2019. Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochemistry 77, 93-99. https://doi.org/10.1016/j.procbio.2018.11.014.
10.1016/j.procbio.2018.11.014Katsuda T, Lababpour A, Shimahara K and Katoh S. 2004. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb. Technol. 35, 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016.
10.1016/j.enzmictec.2004.03.016Kendırlıoglu G, Agırman N, and Cetın AK. 2015. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turkish Journal of Science and Technology 10, 7-10.
Khan Z, Maznah WW, Merican MF, Convey P, Najimudin N and Alias SA. 2019. A comparative study of phycobilliprotein production in two strains of Pseudanabaena isolated from Arctic and tropical regions in relation to different light wavelengths and photoperiods. Polar Science 20, 3-8. https://doi.org/10.1016/j.polar.2018.10.002.
10.1016/j.polar.2018.10.002Kim CJ, Jung YH, Ko SR, Kim HI, Park YH and Oh HM. 2007. Raceway cultivation of Spirulina Platensis using underground water. J. Microbiol. Biotechnol. 17, 853. https://doi.org/10.4490/algae.2006.21.1.133.
10.4490/ALGAE.2006.21.1.133Kim DG and Choi YE. 2014. Microalgae cultivation using LED light. Korean Chem. Eng. Res 52, 8-16. https://doi.org/10.9713/kcer.2014.52.1.8.
10.9713/kcer.2014.52.1.8Kim HJ, Yim KJ, Jang HJ, Hong SJ, Jung JY, Nam SW, Ryu YJ, Lee CG, Cheon SH and Kim ZH. 2023. Enhanced production of lutein by indigenous freshwater microalga, Mychonastes pushpae using various abiotic stresses. Korean Society for Biotechnology and Bioengineering Journal 38, 127-134. https://doi.org/10.7841/ksbbj.2023.38.2.127.
10.7841/ksbbj.2023.38.2.127Kim JY, Joo H and Lee JH. 2011. Carbon dioxide fixation and light source effects of Spirulina platensis NIES 39 for LED photobioreactor design. Appl. Chem. Eng. 22, 301-307. https://doi.org/10.14478/ace.2011.22.3.301.
Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S and Hasegawa T. 2009. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 84, 657-661. https://doi.org/10.1002/jctb.2096.
10.1002/jctb.2096Ko Kj, Lee CH, Moon HN, Lee YJ, Yang Jj, Cho Kc, Kim Dk and Y IK. 2016. Simultaneous effect of salinity and temperature on the neutral lipid and starch accumulation by oceanic microalgae Nannochloropsis granulata and Chlorella vulgaris. Journal of the Korean Society for Marine Environment and Energy 19, 236-245. https://doi.org/10.7846/jkosmee.2016.19.3.236.
10.7846/JKOSMEE.2016.19.3.236Lederman TC and Tett P. 1981. Problems in modelling the photosynthesis-light relationship for phytoplankton. Bot. Mar. 24, 125-134. https://doi.org/10.1515/botm.1981.24.3.125.
10.1515/botm.1981.24.3.125Lee GC and Plasson BØ. 1994. High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44, 1161-1167. https://doi.org/10.1002/bit.260441002.
10.1002/bit.26044100218618541Lee JY, Tae SK, Ki TB and Ji WY. 2005. Biological fixation of CO2 Chlorella sp. HA-1 in a semi-continuous and series reactor system. J. Microbiol. Biotechnol. 15, 461-465.
Lee YJ, Lee CH, Cho K, Moon HN, Namgung J, Kim KH and Yeo IK. 2017. Effect of temperature-induced two-stage cultivation on the lipid and saccharide accumulation of microalgae Chlorella vulgaris and Dunaliella salina. Korean Journal of Fisheries and Aquatic Sciences 50(1), 32-40. https://doi.org/10.5657/KFAS.2017.0032.
10.5657/KFAS.2017.0032Liu XY, Hong Y and Gu WP. 2021. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. Water Reuse 11(2), 301-311. https://doi.org/10.2166/wrd.2021.088.
10.2166/wrd.2021.088Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M, Ikoma Y and Matsumoto H. 2012. Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. J. Agric. Food Chem. 60, 197-201. https://doi.org/10.1021/jf203364m.
10.1021/jf203364m22026557Maroneze MM, Siqueira SF, Vendruscolo RG, Wagner R, de Menezes CR, Zepka LQ and Jacob-Lopes E. 2016. The role of photoperiods on photobioreactors-A potential strategy to reduce costs. Bioresource Technology 219, 493-499. https://doi.org/10.1016/j.biortech.2016.08.003.
10.1016/j.biortech.2016.08.00327521786McGee D, Archer L, Fleming GT, Gillespie E and Touzet N. 2020. Influence of spectral intensity and quality of LED lighting on photoacclimation, carbon allocation and high-value pigments in microalgae. Photosynthesis Research 143, 67-80. https://doi.org/10.1007/s11120-019-00686-x.
10.1007/s11120-019-00686-x31705368Mendes RL, Fernandes HL, Coelho J, Reis EC, Cabral JM, Novais JM and Palavra AF. 1995. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry 53, 99-103. https://doi.org/10.1016/0308-8146(95)95794-7.
10.1016/0308-8146(95)95794-7Menon KR, Balan R and Suraishkumar GK. 2013. Stress induced lipid production in Chlorella vulgaris: Relationship with specific intracellular reactive species levels. Biotechnol Bioeng 110, 1627-1636. https://doi.org/10.1002/bit.24835.
10.1002/bit.2483523297178Mohsenpour SF and Willoughby N. 2013. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology 142, 147-153. https://doi.org/10.1016/j.biortech.2013.05.024.
10.1016/j.biortech.2013.05.02423735796Muller P, Li XP and Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology 125(4), 1558-1566. https://doi.org/10.1104/pp.125.4.1558.
10.1104/pp.125.4.155811299337PMC1539381Münzner P and Voigt J. 1992. Blue light regulation of cell division in Chlamydomonas reinhardtii. Plant Physiol. 99, 1370. https://doi.org/10.1104/pp.99.4.1370.
10.1104/pp.99.4.137016669046PMC1080634Nagappan S and Kumar G. 2021. Investigation of four microalgae in nitrogen deficient synthetic wastewater for biorefinery based biofuel production. Environmental Technology & Innovation 23, 101572. https://doi.org/10.1016/j.eti.2021.101572.
10.1016/j.eti.2021.101572Najafabadi MM and Naeimpoor F. 2023. Boosting β-carotene and storage materials productivities by two-stage mixed and monochromatic exposure stresses on Dunaliella salina. International Journal of Phytoremediation 25, 609-620.
10.1080/15226514.2022.209597635815399Oh HW and Lee SH. 2023. A study on the optimization of culture conditions to increase microalgae productivity as alternative protein food material. Korean Society for Food Engineering 27, 428-436. https://doi.org/10.13050/foodengprog.2023.27.4.428.
10.13050/foodengprog.2023.27.4.428Oh SJ, Kwon HK, Jeon JY and Yang HS. 2015. Effect of monochromatic light emitting diode on the growth of four microalgae species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum tricornutum, Skeletonema sp.). J. Korean Soc. Mar. Environ. Saf. 21, 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001
10.7837/kosomes.2015.21.1.001Pereira S and Otero A. 2019. Effect of light quality on carotenogenic and non-carotenogenic species of the genus Dunaliella under nitrogen deficiency. Algal Research 44, 101728. https://doi.org/10.1016/j.algal.2019.101725
10.1016/j.algal.2019.101725Pulz O. 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology 57, 287-293. https://doi.org/10.1007/s002530100702.
10.1007/s00253010070211759675Ruyters G. 1984. Effects of blue light on enzymes. In: Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Senger H, ed. Springer, Berlin, Heidelberg, 283-301. https://doi.org/10.1007/978-3-642-69767-8_32.
10.1007/978-3-642-69767-8_32Saavedra MDPS and Voltolina D. 1994. The chemical composition of Chaetoceros sp. (bacillariophyceae) under different light conditions. Comp. Biochem. and Physiol. B: Comp. Biochem. 107, 39-44. https://doi.org/10.1016/0305-0491(94)90222-4.
10.1016/0305-0491(94)90222-4Safi C, Zebib B, Merah O, Pontalier PY and Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007.
10.1016/j.rser.2014.04.007Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M and Wilhelm C. 2013. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany 64(2), 483-493. https://doi.org/10.1093/jxb/ers340.
10.1093/jxb/ers34023183259PMC3542041Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O and Hankamer B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8.
10.1007/s12155-008-9008-8Schüler LM, Santos T, Pereira H, Duarte P, Katkam NG, Florindo C and Varela JC. 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research 45, 101732. https://doi.org/10.1016/j.algal.2019.101732.
10.1016/j.algal.2019.101732Shariati M and Hadi MR. 2011. Microalgal biotechnology and bioenergy in Dunaliella. In: Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications. IntechOpen. https://doi.org/10.5772/19046.
10.5772/19046Sirisuk P, Ra CH, Jeong GT and Kim SK. 2018. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresource Technology 253, 175-181. https://doi.org/10.1016/j.biortech.2018.01.020.
10.1016/j.biortech.2018.01.02029348061Soontornchaiboon W, Joo SS and Kim SM. 2012. Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biological and Pharmaceutical Bulletin 35(7), 1137-1144. https://doi.org/10.1248/bpb.b12-00187.
10.1248/bpb.b12-0018722791163Stanier RY, Kunisawa R, Mandel M and Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171-205. https://doi.org/10.1128/br.35.2.171-205.1971.
10.1128/br.35.2.171-205.19714998365PMC378380Sui Y, Muys M, Van de Waal DB, D'Adamo S, Vermeir P, Fernandes TV and Vlaeminck SE. 2019. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresource Technology 287, 121398. https://doi.org/10.1016/j.biortech.2019.121398.
10.1016/j.biortech.2019.12139831078812Vasudevan PT and Briggs M. 2008. Biodiesel production-current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35, 421-430. https://doi.org/10.1007/s10295-008-0312-2.
10.1007/s10295-008-0312-218205018Vu MTT, Douëtte C, Rayner TA, Thoisen C, Nielsen SL and Hansen BW. 2016. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina-an established diet for live feed copepods in aquaculture. Journal of Applied Phycology 28, 1485-1500. https://doi.org/10.1007/s10811-015-0722-2.
10.1007/s10811-015-0722-2Wang CY, Fu CC and Liu YC. 2007. Effects of using light emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J. 37, 21. https://doi.org/10.1016/j.bej.2007.03.004.
10.1016/j.bej.2007.03.004Wang F, Huang L, Gao B and Zhang C. 2018. Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from microalga Eustigmatos cf. polyphem (Eustigmatophyceae). Marine Drugs 16(6), 190. https://doi.org/10.3390/md16060190.
10.3390/md1606019029857588PMC6025076Zapata M, Rodríguez F and Garrido JL. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 195, 29-45. https://doi.org/10.3354/meps195029.
10.3354/meps195029Zhang J, Liu F, Wang Q, Gong Q and Gao X. 2023. Effect of light wavelength on biomass, growth, photosynthesis and pigment content of Emiliania huxleyi (Isochrysidales, Cocco-Lithophyceae). Journal of Marine Science and Engineering 11(2), 456. https://doi.org/10.3390/jmse11020456.
10.3390/jmse11020456- Publisher :The Korean Society of Phycology
- Publisher(Ko) :한국조류학회
- Journal Title :Aquatic Nature
- Journal Title(Ko) :수생생물
- Volume : 4
- No :2
- Pages :63-75
- Received Date : 2024-12-16
- Revised Date : 2024-12-24
- Accepted Date : 2024-12-24
- DOI :https://doi.org/10.23135/an.2024.4.2.3